lunes, 24 de octubre de 2011

De mayor quiero ser m²

Paolo Ruffini
(1765-1822)
Matemático y médico italiano. Nacido en Valentano, ciudad que pertenecía entonces a los Estados Pontificios, cursó estudios de medicina en la Universidad de Módena, pero una vez finalizados se dedicó casi por entero a la investigación matemática.Desde 1787 ejerció la docencia como profesor de matemáticas en la Universidad de Módena. Ganó la cátedra de análisis de la escuela militar de esta ciudad, que hubo de abandonar en 1798 al ser expulsado por negarse a pronunciar el juramento de fidelidad a la República Cisalpina* creada por Napoleón Bonaparte. Tras recuperar sus dominios, el duque de Módena le nombró rector de la Universidad de Módena (1814), en la que ocupó las cátedras de clínica médica, medicina práctica y matemáticas aplicadas. Paolo Ruffini es conocido como el descubridor del llamado método de Ruffini que permite hallar los coeficientes del polinomio que resulta de la división de un polinomio cualquiera por el binomio x-a. Sin embargo, no fue ésta su mayor contribución al desarrollo de la matemática. Hacia 1805 elaboró una demostración de la imposibilidad de la solución general de las ecuaciones algebraicas de grados quinto y superiores, aunque cometió ciertas inexactitudes que serían corregidas por el matemático noruego Niels Henrik Abel. Resultado del trabajo de ambos matemáticos es el llamado teorema de Abel-Ruffini, que demuestra definitivamente esa imposibilidad. También elaboró un pequeño tratado en el que anticipó la teoría de grupos que sería desarrollada por Galois y Cauchy, y estudió el tifus durante la epidemia de 1817. Entre sus obras destaca su "Teoría general de las" ecuaciones en 1798

*En verde.

No hay comentarios:

Publicar un comentario